优雅的曲线,美丽的世界

posted at 2019.8.9 10:27 by Administrator

1、

阿基米德螺旋曲线

阿基米德螺线 ,亦称“等速螺线”。当一点P沿动射线OP以等速率运动的同时,这射线又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。它的极坐标方程为:r = aθ。这种螺线的每条臂的距离永远相等于 2πa。

2、

斐波那契螺旋线

斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多类似斐波那契螺旋线的图案。是自然界最完美的经典黄金比例。斐波那契螺旋线,以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线。斐波那契数列,又称为黄金分割数列。在数学上,斐波那契数列是以递归的方法来定义。

3、

悬链线

悬链线是一种曲线,因其与两端固定的绳子在均匀引力作用下下垂相似而得名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数。久负盛名的雅各布•伯努利在一篇论文中提出了确定悬链线性质(即方程)的问题。实际上,该问题存在多年且一直被人研究。伽利略就曾推测过悬链线是一条抛物线,但问题一直悬而未决。雅各布觉得,应用奇妙的微积分新方法也许可以解决这一问题。

4、

割圆曲线

割圆曲线是在研究古代三大尺规作图问题时的一种数学成果,其发现者为希庇亚斯,若想作一正方形面积为一半径为AM(M为割圆曲线于边AB交点)的圆的面积,只需作一割圆曲线(如上图),再作出一边长为AM与2AB的矩形,则该矩形面积为半径为AM的圆的面积。再求出AM与2AB的几何平均数√(AM•2AB),则以此为边的正方形的面积即为半径为AM的圆的面积。

5、

蝴蝶曲线

 蝴蝶曲线是一种很美的平面上代 数曲线,通过一个特定的极坐标公式可以表达。用很多代数曲线和超越曲线可以表达自然界很多现象,蝴蝶曲线就是一种,变量Θ的调整可以改变曲线形状及其方向。

6、

玫瑰线

世界上第一个明确提出经纬度理论的人是古希腊学者托勒密。最早的本初子午线则出现在15世纪出版的托勒密的世界地图上,定在了当时人们心中的世界起点,即现大西洋中非洲西北海岸附近的加那利群岛。

7、

贝塞尔曲线

贝塞尔曲线于1962,由法国工程师皮埃尔·贝塞尔(Pierre Bézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计。贝塞尔曲线最初由Paul de Casteljau于1959年运用de Casteljau演算法开发,以稳定数值的方法求出贝兹曲线。贝塞尔曲线被广泛用于制图软件中,以前描述曲线并没有很好的方法,直到它的出现。

三次贝塞尔曲线可以包括一个拐点。它拥有两个控制点,两个控制点中间的中点,分别连接控制点与起点、终点的连线的中点。这两根线的中点分别相连接,这个中点就是和曲线相交的地方。

8、

反雪花曲线

生成一条雪花曲线是从一个等边三角形开始的.把三角形的每条边等分成三段并在中间的一段向内作小的等边三角形,但删去新三角形位于旧三角形边上的底.继续这个程序,对每个等边三角形的边再等分成三段,并在中段向内作更小的等边三角形,如此等等,雪花曲线就是在不断重复这样的过程中产生的。

9、

蔓叶线

这曲线的发现是为了解决倍立方问题。蔓叶线的英文名字「Cissoid」是曲线发现了100年后《Geminus》中出现的,意为「像常春藤的」。

 



Tags:

IT技术

添加评论

  Country flag

biuquote
  • 评论
  • 在线预览
Loading